Optimization Techniques for Geometric Estimation: Beyond Minimization

نویسنده

  • Kenichi Kanatani
چکیده

We overview techniques for optimal geometric estimation from noisy observations for computer vision applications. We first describe estimation techniques based on minimization of given cost functions: least squares (LS), maximum likelihood (ML), which includes reprojection error minimization (Gold Standard) as a special case, and Sampson error minimization. We then formulate estimation techniques not based on minimization of any cost function: iterative reweight, renormalization, and hyper-renormalization. Showing numerical examples, we conclude that hyper-renormalization is robust to noise and currently is the best method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overviews of Optimization Techniques for Geometric Estimation

We summarize techniques for optimal geometric estimation from noisy observations for computer vision applications. We first discuss the interpretation of optimality and point out that geometric estimation is different from the standard statistical estimation. We also describe our noise modeling and a theoretical accuracy limit called the KCR lower bound. Then, we formulate estimation techniques...

متن کامل

Computational fluid dynamics analysis and geometric optimization of solar chimney power plants by using of genetic algorithm

In this paper, a multi-objective optimization method is implemented by using of genetic algorithm techniques in order to determine optimum configuration of solar chimney power plant. The objective function which is simultaneously considered in the analysis is output power of the plant. Output power of the system is maximized. Design parameters of the considered plant include collector radius (R...

متن کامل

Estimation of Concentrations in Chemical Systems at Equilibrium Using Geometric Programming

Geometric programming is a mathematical technique, which has been developed for nonlinear optimization problems. This technique is based on the dual program with linear constraints. Determination of species concentrations in chemical equilibrium conditions is one of its applications in chemistry and chemical engineering fields. In this paper, the principles of geometric programming and its comp...

متن کامل

Optimization of Minimum Quantity Liquid Parameters in Turning for the Minimization of Cutting Zone Temperature

The use of cutting fluid in manufacturing industries has now become more problematic due to environmental pollution and health related problems of employees. Also the minimization of cutting fluid leads to the saving of lubricant cost and cleaning time of machine, tool and work-piece. The concept of minimum Quantity Lubrication (MQL) has come in to practice since a decade ago in order to overco...

متن کامل

Sparse Non-linear Least Squares Optimization for Geometric Vision

Several estimation problems in vision involve the minimization of cumulative geometric error using non-linear least-squares fitting. Typically, this error is characterized by the lack of interdependence among certain subgroups of the parameters to be estimated, which leads to minimization problems possessing a sparse structure. Taking advantage of this sparseness during minimization is known to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012